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Review Article

Non-alcoholic Steatohepatitis and Hepatocellular 
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Inflammation, and Apoptosis via Activating the AMPK-
Caspase Axis and JAK/STAT Pathway
Arnab Banerjee1* , Debasmita Das1 , Bithin Kumar Maji1*
1Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, India.

ABSTRACT
The progression of non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) and non-
alcoholic steatohepatitis (NASH) is looked at in this article. It highlights how inflammation, oxidative stress, 
apoptosis, and fat accumulation all contribute to this development. Mouse models and patient data are used in 
the study to explore these pathways. NASH development is linked to the adenosine monophosphate-activated 
protein kinase (AMPK)-caspase 6 axis, where fibrosis is correlated with caspase 3 and 6 activation. There are 
preventive benefits against NASH when caspase 3 and 6 are inhibited. Reduction of inflammation and oxidative 
stress can result in reduced fibrosis and steatosis, which are important contributors to the pathogenesis of NASH. 
In NASH, the immune system is also essential for managing the inflammatory milieu. The transformation of 
NAFLD-NASH-HCC is attributed in part to lipid buildup, apoptosis, oxidative stress, inflammation, and the 
immune system, according to the research. The importance of oxidized phospholipids and the Janus kinase/signal 
transducers and activators of transcription (JAK/STAT) signaling pathway in the development of HCC and the 
progression of NASH are also covered. The results offer significant perspectives on possible therapeutic targets, 
including the JAK/STAT pathway and the AMPK-caspase axis.

Keywords: Hepatocytes, Oxidative stress, Inflammation, Apoptosis, Non-alcoholic fatty liver disease-non-
alcoholic steatohepatitis-hepatocellular carcinoma, Adenosine monophosphate-activated protein kinase-caspase 
axis, Janus kinase/signal transducers and activators of transcription

https://journalofcomprehensivehealth.co.in/

Journal of Comprehensive Health

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others 
to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
©2024 Published by Scientific Scholar on behalf of Journal of Comprehensive Health

INTRODUCTION WITH OBJECTIVES

The development of non-alcoholic fatty liver disease (NAFLD) and it’s more severe form, non-
alcoholic steatohepatitis (NASH), is influenced by lipid metabolism and inflammation. Lipid buildup 
in NASH causes liver damage and programmed cell death.1-3 Research indicates that NASH patients 
have elevated levels of inflammation and cell death in contrast to individuals with uncomplicated 
steatosis. One kind of cell death called necroptosis is assumed to be crucial for the development of 
NASH. Fibrosis formation is correlated with higher activation of caspase 6, a particular mechanism 
implicated in cell death in NASH.4 NASH is also a result of inflammation, with tumor necrosis 
factor (TNF) signaling mitigating liver damage and hepatocyte death.5 Hepatocyte damage and 
mortality are impacted by oxidative stress, which is brought on by an imbalance in the generation 
of intracellular reactive oxygen species (iROS) and intracellular antioxidant molecules.3,6 It has been 
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discovered that the progression from basic steatosis to NASH 
is accelerated by nuclear factor erythroid 2-related factor 
(NRF 2), a master regulator of antioxidant response.7 NAFLD 
is associated with the Janus kinase/signal transducers and 
activators of the transcription (JAK/STAT) signaling pathway 
and P38 mitogen-activated protein kinase (P38 MAPK).8 One 
possible treatment strategy to lessen fat buildup is to alter 
these pathways. In NASH, the immune system plays a role in 
regulating inflammation since pro-inflammatory substances 
lead to the death of hepatocytes under stress. Targeting 
oxidized phospholipids has been tried to delay the evolution 
of NASH since they are a factor in oxidative stress. In general, 
hepatocellular death, inflammation, and fibrosis in NASH are 
caused by the interplay of lipid metabolism, inflammation, 
oxidative stress, and immune cell activity. Comprehending 
these pathways is essential to formulating efficacious therapy 
approaches for the advancement of NAFLD-NASH-HCC.

THE DEVELOPMENT OF NASH AND 
HEPATOCELLULAR INJURY: THE ROLE OF LIPIDS

Lipids play an important role in hepatocellular injury by 
increasing the chances of hepatocellular programmed cell 
death. As NASH occurs when hepatic leukocytes (e.g., 
macrophages) locally release proinflammatory cytokines, 
steatosis induced by long-term feeding of a high-fat diet 
(HFD) may sensitize hepatocytes to cytokine-induced cell 
death in a murine model.9,10 On the contrary, it has been 
shown that NASH patients experience more apoptosis and 
inflammation in comparison to simple steatosis patients.11 
It can be hypothesized that necro apoptosis may also play a 
pivotal role in the pathogenesis of NASH.12 It is also evidenced 
that apoptosis of the liver can also encourage the development 
of NASH in murine models. In contrast, eliminating Ikbkg in 
hepatocytes prevents nuclear factor-B signaling’s pro survival 
impact, which causes stochastic hepatocyte cell death and 
liver damage in HepΔIkbkg mice fed a conventional chow 
diet, which eventually causes steatosis, NASH, and thereby 
hepatocellular carcinoma (HCC), this depicts how NAFLD 
develops naturally.13

ADDRESSING THE FUNCTION OF 
HEPATOCYTE SUSCEPTIBILITY, THE 
ADENOSINE MONOPHOSPHATE-ACTIVATED 
PROTEIN KINASE (AMPK)-CASPASE 
AXIS, AND IMMUNE ORGANS IN THE 
PATHOPHYSIOLOGY OF NASH

A recent study suggested that there is an indirect relation 
between the hepatosplenic axis in the development of 
NAFLD and immune disturbances.3,14-16 Further studies 
are needed to escalate the role of immune organs in the 
development of NAFLD-NASH-HCC through disturbing 
redox equilibrium and immune homeostasis in clinical 

trials. Furthermore, a hallmark of the major urinary protein 
(MUP)-urokinase-type plasminogen activator (uPA) mouse 
model is increased hepatocyte susceptibility to cell death. 
MUP-uPA mice already exhibit increased hepatocyte death 
compared to wild-type mice. In addition to increasing 
hepatocyte death and precipitating NASH, HFD feeding of 
MUP-uPA mice leads to more NASH development.17 NASH 
was also found to be associated with hepatocyte apoptosis 
when AMPK was deleted in hepatocytes. In a diet-induced 
model of NASH, the deletion of AMPK led to the death 
and acceleration of fibrosis in hepatocytes; the activation 
of caspase six by AMPK limits the death of hepatocytes 
during NASH.4 Therefore, it can be stated that the AMPK-
caspase 6 axis plays a pivotal role in the pathogenesis of 
NASH. However, the activation of caspase six is increased 
in various mouse models of NASH and correlates with 
the development of fibrosis in NASH patients. A  broad-
spectrum caspase inhibitor protects against NASH in mice 
that are induced by diet through caspase six inhibition.4,18,19 
A crucial role of inflammation in NASH is the reduction of 
hepatocyte death and liver injury caused by TNF-induced 
signaling, which ultimately leads to reduced steatosis and 
fibrosis in the liver.5 Furthermore, a recent study stated that 
the activation of caspase 3 in a flavor-enhancing high-lipid 
diet-fed rat model also developed NAFLD-mediated cell 
death by lowering mitochondrial transmembrane potential. 
It can further lead to NASH. On the contrary, the inhibition 
of caspases by exogenous antioxidants blunted this 
anomalous situation.2,3,14,20 Therefore, HFD-induced stress 
and hepatocellular apoptosis are significant components of 
the pathogenesis of NASH via targeting the AMPK-caspase 
axis. Furthermore, the liver environment during NASH 
also stimulates oxidative stress in both mouse models and 
patients.21,22

NEW ROUTES AND MEDICINAL OBJECTIVES 
IN NAFLD

Moreover, Nfe2l2 knockout mice have an accelerated 
transition from simple steatosis to NASH in response to 
diet-induced NASH induced by NRF2, a master regulator 
of antioxidant response.7 Moreover, HepΔIkbkg mice are 
more prone to oxidative stress, and antioxidants mitigate 
the progression to NASH.13 During NASH, oxidative stress 
causes hepatic protein tyrosine phosphatases to be oxidized 
and inactivated, like protein tyrosine phosphatase non-
receptor type (PTPN) 2; as a result of PTPTN2 deletion in 
hepatocytes, uncontrolled signals are generated through 
STAT1 and STAT3, accelerating steatosis progression to 
NASH and HCC progression from NASH.23 In addition, a 
major factor in the development of NAFLD is the JAK-STAT 
signaling pathway. P38γ, one of the P38 MAPKs, controls 
the JAK/STAT pathway in NAFLD. It has been demonstrated 
that in mouse hepatocytes exposed to free fatty acids, 
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inhibition of P38γ suppresses lipid formation. These results 
imply that by modifying the JAK/STAT cascade, targeting 
P38γ may be a viable therapeutic approach for decreasing 
lipid accumulation in NAFLD.8

THE DEVELOPMENT OF NASH AND HCC 
IS ASSOCIATED WITH OXIDATIVE STRESS, 
INFLAMMATION, AND LIPOGENESIS

NASH, fibrosis, and HCC development are independently 
promoted by oxidative stress. Hepatocytes are more 
susceptible to cytokine-induced cell death when 
mitochondrial oxidative stress occurs due to hepatic 
accumulation of free cholesterol.24 There is a crucial role 
for the immune system in controlling the inflammatory 
environment in NASH; emphatically, proinflammatory 
factors such as TNF, produced by immunocytes, cause 
lipid-loaded, stressed hepatocytes to die, and these liver 
cells are then susceptible to cell death by cytokines.25 In 
addition, the oxidized phospholipids produced during 
NASH are also non-enzymatic products of oxidant-
mediated lipid peroxidation, whereas they produce iROS 
and cause mitochondrial damage. In addition, a diet-
induced mouse model of NASH-HCC shows a reduction in 
oxidative stress, inflammatory response, fibrosis, liver cell 
death, and progression of NASH-to-HCC when oxidized 
phospholipids were neutralized by antibodies.6 It has 
been shown that neutralizing oxidized phospholipids on 
NASH progression have beneficial effects. Thus, oxidative 
stress, inflammation, and lipid loading all interact during 
NASH to incite hepatocellular death, which results in 
hepatocellular derangements, inflammation, and fibrosis 
of liver tissue. NASH onset and severity are modulated 
by the immune cell-rich environment in the liver due to 
inflammation’s role in these processes. Proinflammatory 
factors such as ATP or extracellular vesicles and endothelial 
cells released by hepatocytes also provoke inflammation, 
and chemokines such as TNF, interleukin(IL)-6, and 
chemokine (C-C motif) ligand (CCL) 2.26-29 Even though 
non-immune cell types (e.g., hepatocytes and endothelial 
cells) can also influence hepatic inflammation in different 
mechanisms, the article mainly warned about the cross-
talk between the apoptosis of hepatocytes to contribute to 
NAFLD and NASH to develop HCC.

CONCLUSION

This study highlights the significance of lipid accumulation, 
apoptosis, oxidative stress, and inflammation in the 
development of NASH and HCC. The findings suggest that 
hepatocellular apoptosis, mediated by various factors such 
as the AMPK-caspase axis, plays a pivotal role in NASH 
pathogenesis. Inhibition of caspase shows protective effects 

against NASH. Oxidative stress and inflammation further 
contribute to NASH progression, while antioxidants 
can mitigate its development. The immune cell-rich 
environment in the liver modulates NASH onset and 
severity through inflammatory processes. Moreover, the 
neutralization of oxidized phospholipids shows beneficial 
effects in reducing oxidative stress, inflammation, and 
fibrosis, thereby preventing NASH-to-HCC progression. 
Overall, the cross-talk between hepatocyte apoptosis, 
lipid accumulation, oxidative stress, and inflammation 
plays a crucial role in the development of NAFLD, NASH, 
and HCC. These findings provide insights into potential 
therapeutic targets and interventions to prevent and treat 
NAFLD-mediated NASH and its associated complications 
through targeting the AMPK-caspase axis and JAK/STAT 
pathway.
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